
Unanticipated Evolution in Software
Product Lines versus

Independent Products: A Case Study
By: Mostafa Hamza, Robert J. Walker, Maged Elaasar

Presented By:

Mostafa Hamza

Sept. 26th 2017

• SPLE

• Software evolution

• Anticipated vs. un-anticipated evolution

• Case Study for un-anticipated SPL evolution

Introduction

2/ 24

• First hand challenges from managing multiple products as separate ones
such as:

• Code duplication

• Multiple places to fix a bug across multiple products

• Refactoring

• Enhancements

• Models and code deviations

• New features

Motivation

3/ 24

Separate Products

4/ 24

• A case study to follow the same process we followed for developing
the product line but using Delta-oriented programming (DOP)

Approach

5/ 24

Vending Machine Simulator (VMS)

6/ 24

• Product 1 (Initial version):

• Front end:
• Script-Processor takes input from a simulated user via a simple

scripting language, passing it to the Parser which parses input coins
and delivering cans of soda pop

• Product:
• VendingMachineFactory read in, execute, and test a set of scripts

for correctness
• VendingMachine controls loading/unloading of coins/pops

VMS Evolution

7/ 24

• Product 2 (New features added):
• A hardware simulator to simulate the internal functionalities of a vending

machine, such as coin slot, racks, channels, receptacles, delivery chute,
display, etc. that replaces the parser;

• Pop was renamed to PopCan for improved clarity

VMS Evolution

8/ 24

• Product 3 (More features added):
• The value of coins was to change to instances of the Cents class from

primitive ints.

VMS Evolution

9/ 24

First Product

10/ 24

Second Product

11/ 24

Third Product

12/ 24

DOP

13/ 24

SPL VMS {

Features = {Frontend, Coin, Pop, Parser, VendingMachine}

Deltas = {dVendingMachine, dIVendingMachineFactory, dCoin, dPop}

Constraints { }

Partitions {

{dDeliverable, dCoin} when (Coin);

{dDeliverable, dPop} when (Pop);

}

Products {

Product1 = {Frontend, Coin, Pop, Parser, VendingMachine};

}

}

SPL File Sample

14/ 24

delta dCoin {

adds {

package org.lsmr.vending.frontend;

public class Coin implements Deliverable

{

private int value;

public Coin(int value) {

if(value <= 0)

throw new
IllegalArgumentException("The value must

be greater than 0: the argument passed was "

+ value);

Delta Sample

this.value = value;

}

public int getValue() {

return value;

}

public String toString() {

return "" + getValue();

}

}

}

}

15/ 24

• Repeat the evolution history for separate products on SPL

• Measure:

• Lines of code affected

• Degree of duplication

Goals

16/ 24

Results – Quantitative

• Impact of change through # of lines changed

Change Pop to
Popcan in
Product 2

Evolving to
Product 3

Separate DOP Separate DOP

Total 42.00 79.00 2614.00 208.00

Mean 3.82 7.18 72.61 29.71

Median 2.00 3.00 39.00 19.00

Standard Deviation 3.30 9.96 90.85 26.95

17/ 24

Results – Quantitative

• Degree of code duplication

4 6 8 10 12 14 16 18 20 22

Delta 24 0 0 0 0 0 0 0 0 0

Separate 152 84 58 42 0 0 0 0 0 0

0
20
40
60
80

100
120
140
160

Duplication before product 3

Delta Separate

18/ 24

Results – Quantitative

• Degree of code duplication

4 6 8 10 12 14 16 18 20 22

Delta 74 18 18 0 0 0 0 0 0 0

Separate 1659 1615 1522 1496 1362 1362 1362 1298 1298 1256

0
200
400
600
800

1000
1200
1400
1600
1800

Duplication after product 3

Delta Separate

19/ 24

Qualitative Observations & Discussion

Criteria DOP Separate

Complexity High due to the addition of
delta’s layer

Low as products diverge
more easily and evolve in an
uncoordinated
manner

Duplication Less Higher

Complications of Bug fixing Results in lower duplication Results in higher duplication

Tool Support Not mature Mature

20/ 24

• Our conclusions may not generalize

• Focused only coarse-grained changes in the system’s actual evolution

Threats to Validity

21/ 24

• Extend the study to the complete set of products (8 products)

• Study the effect of refactoring the FM and the codebase

• Repeat the methodology on other systems

• Study the evolution on the individual commit level

Future Work

22/ 24

• SPL implementations: such as pre-processors, object-oriented,
component-oriented, feature-oriented, aspect-oriented, or delta-
oriented programming [7], [13], [4], [29], [30], [32]

• One-time transformations from independent products to a product
line architecture [e.g., 2, 12, 16, 28]

• Difficulties from SPL evolution [e.g., 15, 34, 36]

• Code clones [9, 17, 18, 20, 26, 27].

Related Work

23/ 24

Summary

• Problem
• Unclear if the benefits outweigh the costs during unanticipated SPLE

evolution

• Solution
• A case study that measure the evolution of separate products approach vs.

DOP

• Results
• No winner, each approach has its own merits and faults

24/ 24

